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Abstract. Parallel programs with shared variables are studied under a semantics
which assumes the fair execution of all parallel camponents. We present transform-
ations which reduce this fair semantics to a simple interleaving semantics with help
of randam assignments z:=? . In fact, different notions of fairmess are considered:
impartiality, liveness, weak and strong fairmess. All transformations preserve the
structure of the original programs and are thus suitable as a basis for syntax-
directed correctness proofs.

1. Introduction

This paper considers parallel programs S = S, 1 ... Il s where the camponents S; of S
are sequential programs which commnicate with each other implicitly via shared
variables. The correctness properties and (in-)formal reascning about such programs
depend on the semantical notion of execution of S.

The simplest way of modelling the execution of S is by arbitrary interleaving of
the execution sequences of its camponents Si /Br1,Br2,FS1,FS2/. But in general inter-
leaving is not what we wish to express when writing S = EH I...1s , Since it models
only the concept of multiprogramming where S runs on a single processor /MP/.

Here we investigate the more ambitious idea of a truly concurrent execution of S
where every camponent S:.L runs on its own processor. To formalize this idea we follow
the proposal of /MP,OL/ to model concurrency of S by interleaving the execution
sequences of its camponents, but with the additional assumption of fairness. Infor-
mally, fairness states that every camponent Si of S which is sufficiently often
enabled will eventually progress. Different interpretations of "sufficiently often
enabled" give rise to different notions of fairmess, viz. impartiality /LPS/, live-
ness /OL/, weak and strong.faimmess /AO/. For liveness e.g. "sufficiently often
enabled" is interpreted as "not yet terminated".

So far semantics and proof theory for fairness assumptions have been studied
mainly in the context of nondeterministic do-od-programs (see /Fr/ for an overview) .
For parallel programs S = 84 ...l S, the question of fairness has been dealt with
only by translating the given program S back into a nondeterministic do-od—program
/APS,IPS/ or by resorting to methods of temporal logic /OL/ which often requires a

translation of the original program S into an equivalent formula in temporal logic
/MP,Pr/.
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In our paper we present a series of transformations T which reduce the concurrent
or fair semantics of parallel programs to the simple interleaving semantics with help
of random assignments z:=? /AP/, one transformation for each notion of fairnmess. All
transformations preserve the parallel structure of the original programs. The approach
represents a refinement of the transformation technique introduced in /AO/ for non—
deterministic do-od-programs.

The interest in such transformations T is twofold:

(1) T can be considered as a sort of scheduler which guarantees that the resulting
program T (S) realizes exactly all the fair executions of S.

(2) T can be used as a basis for syntax-directed correctness proofs. The idea is to
apply an extension of the proof system of /OG/ dealing also with randam assign—
ments to T(S).

In this paper we concentrate on the first aspect. We state a number of results on
the existence or non-existence of transformations with paricular properties. We hope
that these results give a better insight into the structure of the various notions of
fairness. Proofs will appear in the full version of this paper.

2. Parallel Programs

We assume sets Var of variables ranging over integers, Exp of expressions and Bex of
Boolean expressions with typical elements x,y,zeVar, s,t€Exp and b,c €Bex.
Sequential programs are defined by the following BNF-like syntax:

S ::= skip| x:=t | z:=? | 555, | if b then S; else S, fi|
while b do S; od| await b then S; end

where for simplicity nested while's and await's are disallowed. Let if b then S
abbreviate if b then S

.-

1 else skip fi.

Besides usual assignments of the form x:=t we consider random assignments z:=2

which assign an arbitrary non-negative integer to z /AP/. Thus z:=? is an explicit
form of unbounded nondeterminism in the sense that termination of z:=? is guaranteed
but infinitely many final states are possible /Pa /.

Await-statements S = await b then :’:11 end are used to achieve synchronization in

the context of parallel composition. S is executed only if b is true. What makes it
different fram if b then S] fi is that the await guarantees that S1 is executed as
an indivisible action /OG/ (cf. Sec.3).

By a parallel program we mean a program of the form

§ =84 (S 1. 1S

where So is a sequence of assignments and Sqre-- ,Sn are sequential programs. So is
the initial part of S and 51/ ""Sn are the (parallel) components of S inside the

parallel camposition S, | S,
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We distinguish four classes of programs: L(ll), L(] ,?), L( || await) and
L(]l ,await,?) depending on whether random assignments or/and await-statements are
used. L(|l ,await) is essentially the language studied in /OG/ .

In our paper we will study certain (program) transformations, i.e. mappings

T: L) [or L(ll ,await) ] — L(l ,await,?).

Sometimes it is more convenient to leave certain details of such a transformation
open. To this end, we consider transformation schemes, i.e. mappings

T: L) [or L(ll ,await) ] — P @(ll ,await,?))\{g}

which assign to every program S a non—empty set of transformed programs S'e T (S).
(P(M) is the power set of a set M.) By selecting a particular S'e T (S) for every
program S we cbtain a so-called instance T of T . This is a transformation T as above.

3. Interleaving Semantics

We take an interpretation with integers as domain @ assigning the standard meaning to
all synbols of Peano arithmetic. The set of (proper) states is given by & =Var — D
with typical elements o,z . Notations like o[d/x], ofX and o(b) are as usual. We
add two special states not present in 2 : L reporting divergence and A reporting
deadlock.

By a configuration we mean a pair {S,o) consisting of a program Se L( |l ,await,?)
and a state ¢ . Following /HP,Pl/ we introduce a transition relation —> between
confiqurations. <S,0’>-—)<SJ,G'J> means: executing S one step in ¢ can lead to T4
with S] being the remainder of S still to be executed. To express termination we
allow the empty program E with E;S = S;E = E.

The relation — is defined by structural induction on L( || ,await,?). Typical
clauses are:

a) (skip,o)— (E,o>

b) (z:=2,5>—<E,c [d/x]) for every 0¢d e d.

c) {while b do S; od,op—>{S,;while b do S; od,s) if o) = true.

d) {while b do 8; od, 5P —><E,o) if (b) = false.

e) {await b then S; end, o) — (E,z) if o) = trve and (8, 6> =" (&, -
where —™ denotes the reflexive, transitive closure of —>

£) If {8,,0) —>(5,,T) then <s,;S, &) ><5,i8, T

9) If <8;, o> —><T;,T) then

Sqlleeas o>l sy N Tl sg eals, T

Note that assignments, evaluations of Boolean expressions, and await-statements
are executed as atamic or indivisible actions. Therefore statements of the form skip,
x:=t, z:=? and await b then 81 end are called atomic. Parallel composition is
modelled by interleaving the transitions of its components.
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Based on — we introduce same further concepts. A configuration (S,«) is maximal
if it has no successor w.r.t. —> . A terminal configuration is a maximal configuration
<{8,5> with S = E|ll ...l E. All other maximal configurations are called deadlocked.

A camputation of S (starting in o) is a finite or infinite sequence

I ERCH E R CHE R N I

A computation of S is called terminating (deadlocking) if it is of the form

t: od— .1,

where {T, ) is teminal (deadlocked). Infinite camputations of S are called diverging.
We say that S can diverge fram o (can deadlock fram o) if there exists a diverging

(deadlocking) camputation of S starting in o .
The interleaving semantics of programs SeL( |l ,await,?) is

MIST : £~ P(Su{L, A}
defined by

M[s] (o) = {z| {s,0) =% EI...|E, >}
v {Ll| s can diverge fram & 1
v {Aa] s can deadlock from & }

We also consider a variant of M ignoring deadlocks:
M_p,[s](o) = MIsT () \ {A} .

Some further notions. The component S, has texminated in ¢S, |} ...l Sn,c> if s; =E.
The camponent S, is disabled in (81 ... Sn,o’> if either S, = E or
S; = await b then S end; T with G (b) = false. The component S, is enabled if it is
not disabled, i.e. if Si is not terminated and whenever Si=§gai__t b then S end;T holds
then & (b) = true. The camponent Si is active in the step <S1 || Sn’ a>—
Tyl -l T if (si, ¢>—+<Ti, T) . Aprogram Sis deadlock-free if M[S] =M_, [ S1T-

4. Impartiality

Consider the program
S* =while b do x:=x+1 od | b:=false

A ~ — ——

s S

1 2
Under the interleaving semantics S can diverge: L e M [S*] (o) if o (b) = true.
However, in every concurrent or "fair" camputation of S* the second camponent S,
will eventually be executed causing termination of S; and hence S* itself. The
question is how to capture this intuitive notion of fairness.

In this section we define a first approximation to the concept of fairness, viz.

impartiality /LPS/.
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Definition 4.1 A computation ¥: {S,o) =<{T;,c>— ...-—)(Tj,c'j>—->... of an
L( I ,await)-program § = §_;(S,ll ... 8)) is impartial if ¥ is finite or for every
i€{1,...,n} there are infinitely many j such that camponent S, is active in
step (Tj,cj>——><Tj+1,o‘j+1) .

Thus in an infinite impartial computation every component will eventually progress.
The concurrent semantics of programs Se L( Il ,await) , modelled here by interleaving
and the assumption of impartiality, is now given by

‘Minp)IS]] ()= {z | ¢s,sY —=*CEN.NE, }
u{_l. \ 3 infinite impartial camputation of S }
starting in &
U{.AI S can deadlock fram & }

To see the impact of this definition, let us look at the example s* again. Under

the assumption of impartiality S* always terminates: L ¢ M imp‘[ s¥*1 («) for every
state .

5. Structure Preserving Transformations

In this section we restrict ourselves to programs in L{ll ). Our aim is to find a
transformation T which reduces the concurrent semantics Mj_mp of L(|l) to the ordi-
nary interleaving semantics M, i.e. with

MmplIS]I = M[1)]

Such transformations T are useful for two reasons: firstly, they describe a class of
schedulers which implement true concurrency on a single processor machine, and
secondly, they provide a systematic approach of refining existing proof methods for
program correctness under interleaving semantics to methods for dealing directly with
concurrent semantics. Of course, we cannot expect the transformed programs T(S) to
be in L(]| ) because M ip introduces unbounded nondeterminism (and thus discontinuous
semantic operators /Di/) as opposed to M . But we can control this unbounded non-
determinism by making it explicit via random assignments

Z:=?

as analysed in /2P/.
First attempt

A simple way of reducing concurrency to interleaving is to combine two types of al-
ready existing transformations. Given a parallel program S = S.i (S1 ool Sn) one
first follows the approach of /FS1,FS2/ or /Brl,Br2/ and translates S into a big
nondeterministic do-od-program T ,(S) which makes the interleaving semantics M[S]
syntactically visible. Then one can apply the transformations T of /A0/ to

fair
Tnd(s) vwhich use random assignments to realize the assumption of fairness in the
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context of do-od-programs. The drawback of this solution is that the first trans—
lation Tn a destroys the syntactic structure of programs S.

Instead we are interested in transformations which preserve the parallel struture
of programs.

Definition 5.1 A transformation T:L(ll )~ L(ll ,await,?) is called || —preserving
if T satifies

TCS (80 ---l8)) ) = T8 )5 (TS | -oe l TR )

where TI: is a sub-transformation working on the i-th camponent of S. The notation
implies that the only information ’I‘? may use about the structure of S is the total
number n of camponents in S and the index i of the currently transformed camponent.
A transformation scheme T is || -preserving if every instance T of T is |l -preserv-
ing.

Second attempt

In » /A0/ we showed that in the context of Dijkstra's nondeterministic do-od-programs
fairness assumptions can be realized by just adding random assignments z:=? and
refining Boolean expressions in a certain "admissible" way. The question arises
whether this is also possible for parallel programs SeL (|l ).

Definition 5.2 A transformation T:L(ll )= L(|l ,?) is admissible if it is
|| ~preserving and if for every Se L(fl ) there is a set Z of new auxiliary variables
z€ Z used in T(S) for scheduling purposes in the following two ways:

(1) in additional assignments of the form z:=? and z:=t inside of S

(2) in Boolean conjuncts c used to strengthen Boolean expressions b of loops
ﬁi_l_e_bg_gsjgéor c<:>nditionals_i__»‘f__bge_an_sJ _e_lggsz_f_g._ins. We require
that this stregthening is done schematically, i.e. the conjunct ¢ in
independent of the actual form of b.

Again a transformation scheme T is admissible if every instance T of T is.

Note that because T(S) manipulates additional variables Z the best we can hope
to prove is that M imp[s]] agrees with MIT(S)] "modulo 2". This notiocn is
defined as follows: for states ¢ €2 and sets Z¢ Var of variables let

o\z= olvar\z).
This notation is extended to sets M € T u{l,A} pointwise:
M\z = {o\z|cen}u{Li|Lem}v{alae n}.
For state transfomers M,,M,: T—>P(Z vi{l,A}) we write

M= M,md 2
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if M.l(c—)\Z = .Mz(c—)\z holds for every state ce Z .

Theorem 5.3 There is no admissible transformation T:L(ll )— L(ll ,?) such that for
every program SeL(|l )

. sl = T(S mwod 2
Mipls] = MIT©®)] ma
holds where Z is the set of auxiliary variables used in T(S).

The theorem states that it is more difficult to find transformations T realizing
fairness (here impartiality) for parallel programs than for nondeterministic ones.
The reason is that transformations T:L(ll )— L(}l ,?) would have to terminate the
presently executed camponent Si of a program Se€L({l ) in order to force a shift of
control to another coamponent Sj. But after terminating 55 there is no possibility
of resuming Si later on. To achieve this effect we necessarily need an additional
language construct in T: the await-statement.

Third attempt
First we extend Definition 5.2 of admissibility to transformations
T:L(} )— L( Il ,await,?) by allowing in T(S) also

(3) new await-statements await c then S] end where S, is a sequence of
assignments of the form (1) of Definition 5.2.

To conduct a finer analysis, we introduce further concepts:

Definition 5.4 A transformation T:L( |l )—>L( || ,await,?) is sequential (in every
camponent) if it is admissible, i.e. if it is of the form

TCS S o8 ) =T ) (TSN - TS ) )

and if it preserves sequential camposition in every component, i.e. if for every
i=1,...,n

TH(S] ;8 =T (8] 5 Th(Sy

holds. A transformation scheme T is sequential if every instance T of T is.
Sequentiality yields particularly simple transformations.

Definition 5.5 A transformmation T:L(ll )— L( |l ,await,?) is faithful if T does not
introduce deadlocks, i.e. A¢ M [ T(S) J (o) holds for every SeL(ll ) and c< S .

A transformation scheme T is faithful if every instance T of T is. Otherwise T
and T are called deadlocking.

Transformations implementing schedulers should be faithful as schedulers should
never run into any deadlocked configuration.The notion of a faithful transformation
was first introduced for nondeterministic do-od-programs in /AO/ where it meant
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absence of guard-failures. Unfortunately, we cannot find a simple sequential trans-
formation which is faithful:

Theorem 5.6 There is no faithful, sequential transformation T:L(ll )— L( |l ,await,?)
such that for every program Se L(|l )
M. S]] = ML T(S)]mod 2
iplsT = ML (8T mod

holds where Z is the set of auxiliary variables in T(S).

Faithful, but non-sequential transformations will be presented in Sec. 6.

A Solution

However, we can find a deadlocking transformation (scheme)

Timpra * (D) — PO await, 2)\ {8}

which is sequential and realizes impartiality. Certainly, deadlocking transformations
T are not suitable as implementations of fair schedulers, but - as first observed in
/APS/ - may lead to simplified correctness proofs of transformed programs T(S). This
is why we are also interested in deadlocking transformations.

For a given program S = S_; (S, ...l S InL(ll) letT
all programs resulting fram S by

. A (8) be the set of
(1) prefixing S with an initialisation part

INIT = 2,:=?; ... ;2_:=?
IT 1 ; iz

(2) replacing in every loop while b do S' od of a camponent S; same atcmic
statement A in S' by

TEST, (A) = await z » 1 then
zi:=?; for j # i do zj:=zj—1 od;

A
end

(for i = 1,...,n).

Here we use new variables ZyreeeaZy not already present in S and the following
abbreviations:
2yl = 233 1A oAz >

j#idoz.:=2z-10od =
for J #1 do z:=z4-1 od

=152,

R T R T I BT L Y

-1;.. .;zn:=zn—1
To see its impact, we apply T. A t© the program

s* = vhile b do x:=x+1 od | b:=false
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of Sec. 4. Here there is exactly one program T € T, A (8), viz.

1=2; 2z,:=7;

T=12z 2
( while b do await 2412, » 1 then

z1:=?; 22:=z2~1;

xe=xt1
end
od

|| bi=false )

T uses variables 2402, for scheduling purposes. The variable z, counts how many
times we may enter the while-locp of the first camponent of T without switching
control to the second camonent. (The variable z, is introduced for analogous pur-
poses but not relevant for this particular program T without a while-loop in its
second camponent.) Initially z, is set to an arbitrary non-negative integer. Each
time the while-lcop is entered z, is decremented by 1. This ensures that this loop
cannot be executed arbitrarily long without falsifying 21s2, > 1. Note that as
soon as the Boolean expression 24125 Y 1 of the await-statement is false, it remains
so even after executing the second camponent b:=false. Hence T can deadlock fram
states o with o(b) = true.

Thus Tm A is a deadlocking transformation which transforms all diverging non~
impartial camputations of S into deadlocking computations of T. Indeed T it A
realizes the assumption of impartiality in the sense of:

Theorem 5.7 For every L(|l )-program S and T € T, A (8) the equation
MiplsT =M _,[T] md 2

holds where Z is the set of auxiliary variables in T.

6. Liveness

Consider the L( |l )-program
S** = while b do x:=x+1 od | skip .

Intuitively, s** should diverge for states o with G (b) = true - independently
whether the interleaving or a concurrent, i.e. "fair" semantics is chosen. However,
with our definition of impartiality S** always terminates: L & M ls **7 ()
for every state ¢ .

Thus impartility is not adequate to capture the idea of fairmess even for L(ll ).
Therefore we introduce the refined concept of liveness which distinguishes between
terminated and running camponents of parallel programs.
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Definition 6.1 A computation ¥ : {5,y = (T1, 0'1>——>. ..—)(Tj, c'j>——>... of a
program S = S_; (S, ...l ) in L( Il yawait) is live if ¢ is finite or the following
holds for every i € {1,...,n}: either component S, has terminated in same (Tj,c'j)
or there are infinitely many j such that camponent Si is active in step

<Tj, o'j>—><Tj+1, Sy -

Thus in a live camputation every non-terminated component will eventually be
active and make progress. Analogously to ‘Mimp we define a semantics ‘Mlive which
captures this assunption of liveness:

M D8l (e) = {z|<s,ed)—="CEll...IE,T>}
v {L| 3 infinite live computation of S starting in o }
v{A| s can deadlock fram &}

Let us first establish an interesting relation between M. and M

imp live®
Definition 6.2 A program S in L(ll ) is called strong if whenever
(S,c:)y-——)* <‘I‘1 [P T T) with T, = E holds for some ie{1,...,n}then T, .. T

cannot diverge fraom T .

Informally, S camnot diverge with one camponent terminated. This property is not
decidable but it is often easy to check whether a given program is strong. E.g.
program S* of Sec. 4 is strong.

Proposition 6.3 For strong programs S in L( Il) the equation
Miels] =Mjmp]Is]] holds.

As done for impartiality we are looking for structure preserving transformations
which realize the assumption of liveness. Clearly, for strong L( |l )-programs we can

use T,

A due to Proposition 6.3. But in general things are more camplicated:

Theorem 6.4 There is no sequential transformation T:L(ll )— L(l ,await,?) such that
for every S e L(Il)

M1yl ST =M_, [T©)] mod 2
holds where Z is the set of auxiliary variables in T(S).

The result is based on the fact that sequential transformations T cannot distin-
guish whether a certain substatement is the final statement in a component of a
parallel program or whether it is followed by same other statement. To accamplish
this distinction we use in our transformations further auxiliary variables endi
which record termination of the camponent programs.

We present a faithful (but non-sequential) transformation scheme

: L) — P @l ,await,?)) \ {@} .

Tlive
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For a given program § = S; (S1 |l s, in L(ll) let Tlive(s) be the set of all
programs resulting fram S by

(1) prefixing S with an initialisation part

INIT = z1:=?; ...;zn:=?; end]:=false; ... j;end:=false

(2) replacing in every locp while b do S' od of a camponent Si
same atamic statement A in S' by

TEST, (A) = await turn = 1 V 2 » 1 then
zi:=?;§_91;j#i_d_g

if 1end. then z.:=z.-1 fi
— J— 1 1 —

(for i =1,...,n).
(3) suffixing every camponent Si by
END. = end, :=true
i i
(for i =1,...,n).

Again the zi's and endi's are new variables not already present in S. As additional
abbreviation we use

turn = min{ j | z =mm{zk ] endk=false}} .

Due to (3) all components of transformed programs T € T (S) have terminated when

live
all variables enc.’ii are true. Thus the expression turn is properly defined whenever

a test TESTi (3) is executed in T.

Theorem 6.5 For every program Se L(|l ) and Te Tlive(s) the equation
Mo [8T = MIT] med 2

holds where Z is the set of auxiliary variables z; and end.l in T.

The proof of Theorem 6.5 shows that the transformation scheme Tlive not only
models the input-output behaviour of S but in fact provides a one-one correspondence
between live computations of S and arbitrary computations of T € Tlive (S) . Therefore
as an abstract specification of schedulers which guarantee liveness
for parallel programs S. By Theorem 6.5 every deterministic scheduler can be
implemented by replacing the random assignments z:=? in T € Tli ve (S) by deterministic
assigrments and by refining the Boolean conjuncts "z » 1" in await-statements

TEST, (d). (See /Pa/ for the notion of implementation in the context of specifica~
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tions with unbounded nondeterminism.) Moreover Theorem 6.5 guarantees that all these
implemented schedulers are deadlock-free and therefore never require any rescuing or

backtracking from deadlocked configurations /Ho/.

7. Weak Fairness

In this section we extend our programming language to L( |l ,await). Though liveness
is an adequate formalization of the concept of concurrency for the language L(Il ), it
is not sufficient for L( )| ,await). Consider the program

*%

s*** = while b do x:=x+1 od || await b then skip end .

We expect camputations of S¥*¥* starting in a state ¢ with o(b) = true to diverge ~
independently whether the interleaving or a concurrent semantics is chosen. But with
*xx [s**T(s) for

the simple defintion of liveness S always terminates: L ¢ M

live
every state o .

In the presence of await's we have to refine the idea of liveness by replacing the
notion of temination by the notion of enabledness of cawponents (cf. Sec.3). This

leads to the following concept of weak fairnmess /AO,FP/ (called justice in /LPS/).

Definition 7.1 A camputation ¥:<S, o) = (T],c']>-—>...——><Tj,crj>—>... of an
L(]| ,await)-program S = So (S1 ] Sn) is weakly fair if ¥ is finite or the
following holds for every i €{1,.. .,m}: if for all but finitely many j the com
ponent S, is enabled in <T.,o'j> , then there are infinitely many j such that cam-
ponent S; is active in step <Tj’°’j>°')<Tj+1’°—j+1> .

Thus in a weakly fair computation every camponent which is fram same moment on
continuously enabled will eventually make progress. This definition induces a semantics

M analogously to M

wfair live”

Remark 7.2 waair[[s]] =Mlive|[s]] holds for all programs SeL(] ).

As for impartiality and liveness we wish to develop transformations which realize
the assumption of weak fairmess. (Note that the previous definitions of | -preserving,
admissible, sequential, faithful and deadlocking have straightforward extensions to
transformations T : L( | ,await)— L( | ,await,?).) These transformations are again more
sophisticated than the previous ones because we have to check enabledness of campo-
nents in front of every atamic statement inside of while-loops.
live of Sec.6 to an admissible, faithful
scheme Tfair- (Clearly waaj_r cannot be sequential by Theorem 6.4 and Remark 7.2.)

ir
Given a program S = SO; (S] ..ol sn) in L( ] ,await) this scheme

We refine the transformation scheme T

T wfair will use sets

of new variables, viz. 244 endi, pcy fori=1,...,n. The zi's and endi‘s are used
as in Tlive
the component Si is in front of an await-statement and if so in front of which one

. The pci's are a restricted form of program counters which indicate whe
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To this end, we assign to every occurrence of an await-statement in Si a unique num-
ber 1 > 1 as label. Let L, denote the set of all these labels for Si and bl denote
the Boolean expression of the await-statement labelled by 1. Further on we introduce
for Si the abbreviation

enzbled, = -end; A l/e\L (pe; = 1—>b))
i

By the following construction of T wEair’ enabledi will be true iff the camponent Si
of S is indeed enabled.
The transformation scheme

Togniy : LI await) — P (LN ,await,?)) \ {@}
maps a given program S = SO; (S] -1 Sn) in L)l ) into the set waair(s) of all
programs resulting fram S by
(1) prefixing S with
INIT = for i =1,...,ndo z,:=?; end,:=false; pc,:=0 od

(2) replacing every substatement await b, then S' end
with 1 € Li in Si by
pci:=l; await bl then S'; pci:=k end
where k ¢Li holds, e.g. k=0 (for i = 1,...,n).
(3) transforming in the so prepared program every loop while b do S' od
in a camponent S, as follows: - -
(i) replace same atamic statement A in S' by
TEST, (A) = await turn = i v. 2 3 1 then
z;:=2; for j £1do
if enablec"lj then zj:=zj-‘1
else z.:=2 fi
od;
A
end
(ii) replace every other atomic statement B in S' not affected under (i) by
RESET, (B) = await true then
for j # i do if -1enabledj£h£n_»zj:=?§.__o_q;
B

end
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Cament: If A or B are already await-statements, we "amalgamate" their Boolean
expressions with twn = i A z » 1 or true to avoid nested await's. The expression
turn is here defined as follows:

turn=m:|.n{j | zj =mln{zk | enabledk = true}}
(4) suffixing every component Si by

END, = end, = true

i i

Inside RESE.'I‘i (B) and TE)STi (A) each of the variables zj associated with Sj is reset
as soon as Sj gets disabled. Thus zj is continuocusly decremented by zj:=zj—1 inside
TESTi (&) only if Sj is continuously enabled. This formalizes the idea of weak fair—
ness where only those camponents which are continuocusly enabled are guaranteed to
progress eventually.
Theorem 7.3 For every program S € L( || ,await) and T € waair(s) the equation

M yrair[81 = MITT mod 2

holds where Z is the set of auxiliary variables zi, endi and pc; in T.

8. Strong Fairness

Weak fairness guarantees progress of those camponents which are continuocusly enablec
A more ambitious version of fairmess is strong fairness /A0,FP/ (called fairnmess in
/LPS/) where progress is already guaranteed if the camponent is infinitely often
enabled.

Definition 8.1 A camputation ¥ : {(S,o>=<T,,s > — ...—><Tj,crj)——>... of an

L( |l ,await)-program S = S_; (S| ...l 5) is strongly fair if § is finite or the
following holds for every i € {.‘] Joun ,n} : if for infinitely many j the component Si
is enabled in {T., .Y, then there are infinitely many j such that camponent s, is

active in the step Tj,o'j>—>(TjH,G'j+]> .

Analogously to ‘waair
scheme T wfair to a scheme

we define ‘Msfair' We refine the previous transformation

Tepaiy® DU sawait) —> Pl await,?)) \ {2}
for strong fairness. For a given program S = S_; (S, . §) in L(ll ,await) let
Tofair(S) result fram S by applying the steps (1), (2) and (4) as in T, . . but

with the following new step (3):

(3) replace in the so prepared program every atamic statement A occurring
in a while-loop of Si by
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TEST, (A) = await turn = i V z ) 1 then
z;:=2; for j +1ido
if enabled. then z.:=z.-1 fi
- j— 3 1 -
od;
A

end

As with T . . we have to test the enabledness of the camponents Sj of S in front of
every atamic statement. But in contrast to T wair the transformed programs

T € Teeniy (S) do not reset the variables zj for camponent Sj when sj gets disabled.
Instead we have to decrement 2 (and be prepared for switching to camponent Sj)
whenever Sj is enabled. This change ensures that those Sj which are infinitely often

enabled make eventually progress. These cbservations are formalized in:

Theorem 8.2 For every program S € L( || ,await) and T € T (S) the equation

sfair
Mpoi I81 = MIT] mod 2

holds where Z is the set of auxiliary variables Ly end:L and pe; in T.

9. Conclusion

We presented here a series of structure preserving transformations which reduce dif-
ferent notions of a concurrent or fair semantics for parallel programs to a simple
interleaving semantics. These transformations can be viewed as abstract specifications
of schedulers guaranteeing only fair camputations.

But they also provide a basis for syntax-directed correctness proofs for parallel
programs under fairmess assumptions. We outline this idea with help of a simple
example. Consider the L(|| )-program

S = while x>0 do skip; x:=x-1 od | while x>0 do skip od .
Under the interleaving semantics M this program can diverge but under the semantics
M 1live modelling the assumption of liveness S always terminates. We write this fact as

M ? live {true} 5 {true}

in the sense of total correctness modulo liveness.

First dbserve that S is a strong L(|| )-program. Thus to prove (1) it suffices to

apply the transformation scheme T, A modelling impartiality and prove for scme

program T € T. A (8)

(2) = _, {owel v {orwel
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where = _ A refers to the interleaving semantics M _ A ignoring deadlocks. The
equivalence of (1) and (2) follows fram Theorem 5.7 and Proposition 6.3.

To prove (2) we will use a simple extension of the proof system /OG/ which ignores
deadlocks but deals with termination in the presence of randam assignments z:=? ,
i.e. the extension deals with "total correctness modulo deadlocks". As in /OG/ the
extended proof system proceeds in two steps: first it proves correctness of the
camponents of a parallel program T and then it uses a proof rule for parallel campo-
sition to prove correctness of the whole program T.

Note that in our particular example S there are two transformed programs
TeT it A (8) for which we could prove correctness in the sense of (2) with the
extended proof system of /OG/ - one, say T,, is obtained by applying the expansion
TEST (d) of TimpJr A (8) to the atamic statement A = skip in the first camponent of S,
another one, say Tyr by applying TEST] (A) to A = x:=x~1. It turns out that for T,
claim (2) is considerably simpler to prove correct in the extended proof system
than for T1 . This adbservation explains the advantage of having nondeterministic
transformation schemes like T imp+A to our disposal: they can be applied flexible
according to the needs of particular examples like S.

Finally, we stress the fact that for proving (1) about S we simply need to prove
total correctness modulo deadlocks for T, € T, A(S) in (2). This connection ex~

2 impt+
plains why in correctness proofs deadlocking transformation schemes like T

impt+ A
are often desirable. For describing schedulers we are of course advised to use
faithful transformation schemes only.
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